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Diagnostic Molecular Oncology, Istituto Oncologico Veneto, IRCCS, Padova, Italy, 3 Department of Dermatology, IRCCS Ospedale Maggiore, Milan,
Italy, 4 Centro Santa Maria Nascente, IRCCS Fondazione Don Gnocchi, Milan, Italy

Background. The cellular reservoirs of Kaposi’s sarcoma-associated herpesvirus (KSHV) and the exact nature of the putative
KSHV-infected circulating precursor of spindle cells of Kaposi’s sarcoma (KS) still remain poorly defined. Because KS spindle
cells are thought to be of endothelial origin, and because mature endothelial cells do not sustain persistent KSHV-infection,
our attention was focalized on circulating hematopoietic precursors able to differentiate into endothelial lineage. Methods

and Findings. Late endothelial progenitor cells (late-EPCs) were cultured from the peripheral blood mononuclear cells of 16
patients with classic KS. The presence and load of KSHV genomes were analyzed by real-time polymerase chain reaction in
DNA extracted from cells and supernatants of late-EPC cultures obtained from 7 patients. Endothelial colonies cultured from
the peripheral blood of KS patients were found to satisfy all requisites to be defined late-EPCs: they appeared from the CD14-
negative fraction of adherent cells after 11–26 days of culture, could be serially expanded in vitro, expressed high levels of
endothelial antigens but lacked leukocyte markers. Late-EPC cultures were found to harbor KSHV-DNA at variable levels and to
retain the virus after multiple passages in cells as well as in supernatants, suggesting that a quote of KSHV lytic infection may
spontaneously occur. Lytic phase induction or hypoxia could amplify virus release in supernatants. Conclusion. Our results
suggest that circulating endothelial progenitors from KS patients are KSHV-infected and support viral productive replication
and may therefore represent potential virus reservoirs and putative precursors of KS spindle cells.
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INTRODUCTION
Kaposi’s sarcoma (KS) is a multifocal angioproliferative disease of

the skin and mucosa. Central to its pathogenesis is a hyperprolifera-

tion of spindle-shaped cells, which are the prominent and hallmark

cells of KS lesions. Spindle cells are thought to be of endothelial

origin that assume the characteristic spindle shape upon infection

with KS-associated herpesvirus (KSHV), also called human

herpesvirus-8 (HHV-8), the causative agent for KS [1]. The cellular

reservoirs of KSHV infection still remain poorly defined. Previous

investigations have demonstrated KSHV infection in circulating

monocyte/macrophages and B lymphocytes of KS patients, and

suggested therefore that these cells may participate in the

dissemination of viral infection in vivo [2]. More recent studies

have demonstrated that also progenitor populations, as CD34+ cells,

can sustain persistent KSHV infection when infected in vitro, and

may therefore act as possible infection reservoir [3].

In KS patients multiple lesions, supposed to be multiclonal in

origin [4], can appear synchronously in widely dispersed areas,

without evidence of a primary tumor as a source of metastasis.

Although it cannot be excluded that KSHV may directly infect

mature endothelial cells at the site of the lesions, two main

considerations rather suggest that KS lesions may originate from

the seeding of previously infected endothelial precursors. The first

consideration derives from the observation that KS lesions often

progress during or following states of systemic inflammation, and

that KS tumors sometimes arise precisely at sites of previous local

inflammation, such as surgical wounds (a property known as the

Koebner phenomenon) [5], thus suggesting that an inflammatory

environment can elicit spindle cell proliferation from circulating

KSHV-infected precursors. The second and more stringent

consideration derives from the demonstration that recipients of

kidney allografts KSHV-negative prior to transplantation may

develop KS lesions containing KSHV-infected neoplastic cells of

donor origin. This observation clearly indicates that infected

progenitor cells from KSHV-infected donors without KS can be

seeded and undergo neoplastic transformation and progression in

the recipient immunosuppressed hosts [6]. Although it is possible

that donor-derived KS precursors might be mature endothelial cells

of the kidney, it appears far more likely that they may originate from

circulating endothelial progenitors entrapped within the graft.

A clear-cut identification of putative KSHV-infected endothelial

progenitors in the peripheral blood of KS patients is still lacking.

Therefore, in the present study we cultured circulating endothelial

progenitor cells from the blood of patients with classic KS (cKS)

and assessed their status of KSHV infection.

METHODS

Study subjects
Sixteen patients with cKS were included in the study, 10 males

and 6 females, mean age 70 years (range 47–82). All patients had
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histologically confirmed diagnosis of KS, were positive for anti-

HHV8 antibodies and negative for HIV. Patients in systemic

chemotherapy were excluded. Staging was performed in accor-

dance with our classification that takes into account the prevalent

type of lesions, localization, clinical behaviour, evolutive pattern

and presence of complications [7,8]. Late endothelial progenitor

cell (late-EPC) cultures were performed at a single time point on

fresh peripheral blood samples from all the patients; staging at this

time is reported in Table 1. Seven of these patients underwent

KSHV-DNA analysis and titration of KSHV-specific antibodies;

one healthy KSHV-seronegative control was included for these

analyses. Ethics approval was obtained from the local Institutional

Review Committee and a signed informed consent was obtained

from all participants.

Cultures of late-endothelial progenitor cells
Late-EPCs were generated from peripheral blood mononuclear

cells (PBMCs) of cKS patients according to methods described by

Ingram [9], with minor modifications. Briefly, PBMCs were

obtained by Ficoll density gradient centrifugation (Cedarlane,

Hornby, Canada) [10] from 30 ml of fresh venous peripheral

blood, resuspended in EGM-2 medium (Cambrex Bio Science,

Walkersville, MD) and seeded onto six-well tissue culture plates

(56106 cells/well) precoated with human fibronectin (1 mg/cm2,

Sigma-Aldrich, St. Louis, MO). Four to eight wells (mean

6.076s.e. 0.37) were plated for each patient. In two experiments,

PBMCs underwent separation of CD14+ and CD14- fractions

using immunomagnetic selection with mini-magnetic-activated cell

sorter (MACS) cell isolation kit (Miltenyi Biotec, Bergisch

Gladbach, Germany) according to the manufacturer’s instructions.

After 3 days of culture, nonadherent cells and debris were

aspirated, adherent cells were washed with EGM-2 medium, and

EGM-2 medium was added to each well. Medium was changed on

day 7 and every 3 days until the first passage. Late-EPC colonies

were identified by visual inspection using an inverted microscope.

Late-EPCs were released from the original tissue culture plates by

trypsinization (trypsin 0.25%) (Euroclone, Wetherby, UK),

resuspended in EGM-2 medium, and plated onto 25 cm2 tissue

culture flasks precoated with fibronectin for further passages.

Multiple colonies from the same patient were pooled at this step.

In one single experiment, late-EPCs obtained from a KS patient

underwent cell sorting of CD146+ cells (EPICS ALTRA Cell

Sorter; Beckman-Coulter, Fullerton, CA). Purity of CD146+ cells

before and after sorting was 98.7% and 100%, respectively. This

highly pure population of CD146+ late-EPCs was replated and

maintained in culture for further two weeks for virus analyses.

Characterization of late-endothelial progenitor cells
Cells were cultured onto fibronectin-coated, 2-chamber Lab-Tek

slides (Nalge NUNC International, Rochester, NY) and attached

cells were incubated with 10 mg/ml Dil-acetylated-low-density

lipoprotein (Dil-ac-LDL) (Molecular Probes, Eugene, OR) in

EGM-2 medium for 1 hour at 37uC. Cells were then fixed with

2% formaldehyde for 10 minutes and incubated for 1 hour with

fluorescein-isothiocyanate (FITC)-labeled Ulex Europaeus Aggluti-

nin-1 (UEA-1; Sigma-Aldrich). Alternatively, cells were fixed with

methanol, permeabilized with 0.1% Triton X-100, blocked with

10% normal goat serum (Dako, Hamburg, Germany) and incubated

with purified antibodies against human von Willebrand Factor

(vWF), endothelial nitric oxide synthase (e-NOS) or caveolin-1 (Cav-

1) (Becton-Dickinson, San Jose, CA), followed by appropriate FITC-

or phycoerythrin (PE)-conjugated secondary antibodies (Jackson

Immunoresearch, West Grove, PA). Slides were mounted in anti-

fading mounting media containing DAPI (Vectashield; Vector

Laboratories, Burlingame, CA) and examined by conventional

fluorescence-microscopy (Leitz Dialux 22 microscope system).

For antigen detection by flow cytometry, 56105 late-EPCs were

incubated with different anti-human monoclonal antibodies (mAbs)

for 30 minutes at 4uC in the dark. The following FITC-, PE-,

allophycocyanin (APC)- or biotin-conjugated mAbs were used: anti-

CD31, -CD45, (Becton-Dickinson); -kinase insert domain receptor

(KDR) (Sigma-Aldrich), -CD105 (Euroclone), -CD14 (Caltag

Laboratories, Burlingame, CA), -CD146 (Chemicon, Temecula,

CA), -CD34 (Miltenyi Biotec). The FASER technique was

performed for CD34 detection according to manufacturer’s

instructions (Faser kit-APC, Miltenyi Biotec). Isotype-matched

irrelevant mAbs were used as negative controls. Data were acquired

on a FACSCanto flow cytometer (Becton-Dickinson) and analyzed

using FACSDiva software. Cells were electronically gated according

to light scatter properties to exclude cell debris.

Matrigel assays were performed as described [9]. Late-EPCs were

seeded onto 96-well tissue culture plates coated with 70 ml Matrigel

(Becton-Dickinson) at a cell density of 26104 cells per well, and

incubated at 37uC. Cells were observed during the following 12–

72 hours with inverted microscopy for capillary-like formation.

Assessment of KSHV infection
Plasma samples were analyzed for the presence and titers of

antibodies to a latency-associated nuclear antigen (LANA) and to a

lytic phase-associated structural protein encoded by ORF65, as

previously described [11]. Antibody titers were calculated as the

reciprocal of the highest plasma dilution giving positive results.

Table 1. Clinical characteristics of patients with cKS at the
time of late-EPC culture.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Characteristics Overall patients

No. of patients 16

Age, yra 70.062.4

Sex, no.

Male 10

Female 6

KS stageb, no.

I: maculo-nodular

A 4

B 5

II: infiltrative

A 2

B 1

III: florid

A 1

B 2

IV: disseminated

A 0

B 1

aMean6standard error.
bcKS patients were classified according to our classification that takes into

account the prevalent type of lesions, localization, clinical behaviour, evolutive
pattern and presence of complications [7,8].

A = slow evolution; B = rapid evolution; rapid denotes an increase in the total
number of nodules/plaques or in the total area of plaques in the three months
following the last examination.
doi:10.1371/journal.pone.0001520.t001..
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PBMC and late-EPC cultures from 7 cKS patients and from a

healthy control were tested for the presence and load of KSHV

DNA sequences. DNA was extracted from at least 26105 cells and

from 200 ul of DNAse-treated culture supernatants as previously

described [12]. KSHV viral load was measured by quantitative

real-time polymerase chain reaction (PCR), as reported elsewhere

[12]. To induce KSHV lytic replication, late-EPCs were incubated

for 48 hours either with 3 mM n-butyrate (Sigma-Aldrich), or with

20 ng/ml of phorbol 12-myristate 13-acetate (TPA, Sigma-

Aldrich) [12]. Alternatively, late-EPCs were exposed to hypoxia

by incubation for 96 hours in anaerobic conditions with less than

2% oxygen (GasPack-Pouch Systems, Becton-Dickinson) [13].

Statistical analysis
The Wilcoxon signed-rank test was used to analyze the statistical

significance of data obtained in the in vitro induction of KSHV lytic

replication. Analysis was performed with OPENSTAT3 software.

RESULTS

Late-endothelial progenitor cell cultures from classic

Kaposi’s sarcoma patients
Late-EPCs were obtained from the PBMC of 16 cKS patients

whose characteristics are reported in Table 1. Small colonies

originated from adherent cells and were apparent after 11–26 days

of culture; the mean number of colonies generated from 106

PBMCs was 0.09060.020, equivalent to 2.8160.39 colonies from

each patient. Late-EPCs proliferated slowly during the first weeks,

but then proliferated more rapidly and could be serially expanded

in vitro through multiple passages, up to 7–10 weeks, when they

finally stopped growing and entered senescence. During these

passages the cells retained their endothelial morphology, forming

cobblestone-like monolayers (Fig. 1). Late-EPCs stained with

UEA-1, efficiently took up ac-LDL and expressed high levels of the

endothelial antigens e-NOS, vWF, Cav-1, CD31, CD105, CD146,

KDR and CD54, but were negative for the leukocyte markers

CD45 and CD14 (Fig. 2A). According to previous observations

[14], the expression of CD34 on late-EPC surface was at low

intensity and could therefore be better detected when the highly

sensitive FASER technique, instead of conventional cytometry,

was used (Fig. 2B). Finally, within 12 hours of incubation on

Matrigel, late-EPCs formed characteristic tube-like structures

assembled in a branching reticular network, indistinguishable

from those generated by a control endothelial cell line (Fig. 3). On

the whole, these data indicate that the cultures obtained from

patients with cKS satisfied all requisites to be defined late-EPCs.

Because it has been demonstrated that late-EPCs develop

exclusively from the CD14- fraction of PBMCs [15], the CD14+
and CD14- fractions were separated from PBMCs of two cKS

patients on day 0 (.98% purity by flow cytometry) and were

cultured independently. As expected, late-EPC colonies quite

similar to those obtained from unfractionated PBMCs developed

in CD14- but not in CD14+ cultures (not shown).

Analysis of KSHV presence and viral load

quantification
KSHV DNA presence and load was determined by real-time PCR

in PBMCs and late-EPC cultures from 7 cKS patients, and in one

KSHV-seronegative healthy control, as shown in Table 2. PBMC

samples from all cKS patients were found to harbor KSHV DNA

sequences [7–359 KSHV genome equivalents (GE)/105 cells].

Real-time PCR analyses performed on late-EPC cultures revealed

the presence of detectable amounts of KSHV genomes in all

cultures obtained from the cKS patients, whereas late-EPCs from

the healthy control were found to be negative. Moreover, KSHV

DNA was detected at variable levels in DNA extracted from

culture supernatants, suggesting that a quote of KSHV lytic

infection may spontaneously occur in these cells. To further

confirm these data and possibly analyze the trend of KSHV

infection in these cells, late-EPCs obtained from two patients were

analyzed in multiple passages. As shown in Table 2, late-EPCs

from patient KS 4 showed a peak replication level (1332 GE/ml)

in culture supernatant at day 34, followed by high levels of viral

genomes in cellular DNA obtained in the following passage,

suggesting the propagation of viral progeny to uninfected cells.

Moreover, in another patient (KS 6) KSHV DNA could be

detected in relatively high amounts even in cells and supernatants

collected from late-EPC cultures after longer periods of time (day

71), indicating that late-EPCs may retain KSHV infection until

senescence. Because none of the endothelial markers used to

characterize our cultures was singularly expressed on the totality of

late-EPCs (each single marker being expressed by up to 98.961%

of cells, Fig. 2A), we wondered whether cells expressing endothelial

markers could be responsible for KSHV infection in our cultures.

Therefore, in one experiment late-EPCs (from patient KS 7) were

sorted for the endothelial marker CD146 [15,16], replated and

analysed for viral load and release before and after cell sorting,

strictly maintaining the same culture conditions. Culture of sorted

Figure 1. Late-EPCs can be cultured from peripheral blood mononuclear cells of patients with cKS. A representative phase-contrast photograph of
a late-EPC colony, identified as a well-circumscribed monolayer of cobblestone-appearing cells, is shown. Similar colonies were obtained from 15
different patients. A) 6100 magnification, B) 6200 magnification. Late-EPCs were photographed using a Leitz Diavert microscope system.
doi:10.1371/journal.pone.0001520.g001
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CD146+ late-EPCs gave rise to cobblestone-like monolayers of

cells morphologically identical to cultures of unsorted cells. The

persistence of CD146 positivity of sorted CD146+ late-EPCs was

confirmed after 2 weeks of culture, before performing viral analysis

(Fig. 4). As shown in Table 2, the levels of viral genomes in cellular

DNA remained similar before and after sorting in basal conditions

(250 and 271 KSHV GE/105 cells, respectively). Also the amounts

of viral genomes spontaneously released by late-EPCs in the

supernatants were similar before and after sorting (584 and

667 KSHV GE/ml, respectively), thus suggesting that the

negligible proportion of CD146-negative cells did not represent

the source of virus in our cultures.

Figure 2. Immunophenotypic characterization of late-EPCs obtained from 15 patients with cKS. Late-EPCs express high levels of endothelial
antigens but lack leukocyte markers. A) Percentage of positive cells for the indicated antigens, data expressed as mean6standard error. B)
Representative flow cytometry analysis. Note that binding of UEA-1, uptake of ac-LDL and staining of e-NOS, vWF and Cav-1 were examined by
conventional fluorescence-microscopy. UEA-1 = Ulex Europaeus Agglutinin-1; ac-LDL = acetylated-low-density lipoprotein; e-NOS = endothelial nitric
oxide synthase; vWF = von Willebrand Factor; Cav-1 = caveolin-1.
doi:10.1371/journal.pone.0001520.g002
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Induction of KSHV lytic cycle
To induce the viral lytic cycle in KSHV-infected late-EPCs,

cultures from two patients were treated in parallel with n-butyrate

or TPA, whereas cultures from three other patients had sufficient

cells to be treated only with n-butyrate. KSHV genomes were

measured by real-time PCR in culture supernatants 48 hours after

induction. As reported in Fig. 5A, induction of KSHV lytic

program by chemical treatment lead to a statistically significant

increase in virus release in culture supernatants (Wilcoxon signed-

rank test, P = 0.009), suggesting that late-EPCs may support

KSHV productive replication. As shown in Fig. 5B, n-butyrate

treatment of sorted CD146+ late-EPCs (from patient KS 7)

increased the release of KSHV genomes in the supernatants to the

same extent as unsorted cells (1050 and 812 KSHV GE/ml,

respectively), thus suggesting that late-EPCs with proven endo-

thelial phenotype can support viral lytic induction.

The effects of late-EPC exposure to prolonged hypoxia, which

may act in vivo as a cofactor in the development of KS lesions,

were evaluated in 2 patients. In both cultures, hypoxia induced an

increase in KSHV levels in culture supernatants. In facts, late-

EPCs from patient KS 5 showed a 5-fold increase in virus release

(from 906 to 4454 GE/ml), whereas a moderate increment was

Figure 3. Late-EPCs obtained from patients with cKS form capillary-like structures in vitro. Late-EPCs cultured in Matrigel gave rise within 12 hours
of incubation to vascular structures that were quite similar to those formed by control endothelial cell lines. A) A representative phase-contrast
photograph of the capillary-like structures formed by late-EPCs from a patient with cKS (640 magnification) is shown. B) For comparison, a
photograph of the structures formed by ECV 304 cell line (640 magnification) is shown. Capillary-like structures were photographed using a Leitz
Diavert microscope system.
doi:10.1371/journal.pone.0001520.g003

Table 2. KSHV-DNA in peripheral blood mononuclear cells and in late-EPC cultures from patients with cKS according to their
clinical stage and KSHV serology.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PBMCs late-EPCs late-EPC supernatants

KSHV serologya KSHV-DNA KSHV-DNA KSHV-DNA

Patient Gender Age KS stageb Anti-ORF65 Anti-LANA GE/105 cells GE/105 cells GE/ml Day of culture

KS 1 F 76 1A 400 1600 17 18 335 23

KS 2 F 72 1B 100 100 51 145 468 30

KS 3 F 62 1A 800 12800 106 74 760 31

KS 4 M 80 3B – 25600 81 104 1332 34

1327 959 42c

64 594 48c

KS 5 M 72 1B – 6400 7 109 564 43

KS 6 M 62 2B 6400 400 359 182 906 47

335 1329 71c

KS 7 M 77 1B – 3200 187 250 584 21

271d 667d 35

Healthy
control

F 68 – – 0 0 0 38

aAntibody titers were calculated as the reciprocal of the highest plasma dilution giving positive results.
bcKS patients were classified according to our classification that takes into account the prevalent type of lesions, localization, clinical behaviour, evolutive pattern and

presence of complications [7,8].
cIn two patients the presence of KSHV-DNA was determined in multiple passages of unstimulated late-EPC cultures.
dKSHV-DNA determined in highly pure CD146+ late-EPCs, maintained in culture for further 2 weeks after CD146 sorting.
KSHV = Kaposi’s sarcoma-associated herpesvirus; PBMCs = peripheral blood mononuclear cells; late-EPC = late-endothelial progenitor cell;
cKS = classic Kaposi’s sarcoma; LANA = latency-associated nuclear antigen; GE = genome equivalents.
doi:10.1371/journal.pone.0001520.t002..
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Figure 4. Flow cytometry analysis showing CD146 expression on different late-EPC populations. To confirm that late-EPCs with proven
endothelial phenotype could support KSHV infection, late-EPCs from one cKS patient underwent cell sorting of CD146+ cells and were cultured for
further 2 weeks. Analysis of unsorted late-EPCs stained with isotype control (A) or anti-human CD146 mAb (B); analysis of highly purified CD146+ late-
EPCs stained with anti-human CD146 mAb immediately after sorting (C) or after 2 weeks of culture (D).
doi:10.1371/journal.pone.0001520.g004

Figure 5. Late-EPCs obtained from patients with cKS support KSHV productive replication. A) To induce KSHV lytic replication, late-EPCs from cKS
patients underwent treatment with n-butyrate (5 patients, solid lines) or TPA (2 patients, hatched lines) for 48 hours. Multiple colonies from each
patient were pooled before treatment. B) To confirm that late-EPCs with proven endothelial phenotype could support KSHV lytic replication, late-
EPCs from one cKS patient underwent cell sorting of CD146+ cells. Unsorted late-EPCs (solid line) or highly purified CD146+ late-EPCs from the same
cKS patient were cultured for further 2 weeks after sorting (hatched line) and underwent treatment with n-butyrate for 48 hours. In any case, KSHV
genomes were analyzed by real-time PCR in DNA extracted from late-EPC supernatants. P value was determined using the Wilcoxon signed-rank
test.KSHV genomes were analyzed by real-time PCR in DNA extracted from culture supernatants. KSHV = Kaposi’s sarcoma-associated herpesvirus;
TPA = phorbol 12-myristate 13-acetate.
doi:10.1371/journal.pone.0001520.g005
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observed in the culture of patient KS 6 (from 564 to 690 GE/ml).

Late-EPCs obtained from the healthy negative control were found

to be repeatedly negative for KSHV DNA sequences also in

hypoxic culture conditions (not shown).

DISCUSSION
In this report, we provide evidence that late-EPCs from the

peripheral blood of patients with cKS harbor KSHV, may support

lytic replication and may act, therefore, as viral reservoirs. The

novelty of this finding resides in the nature of late-EPCs. Among

other cell populations with endothelial features circulating in adult

peripheral blood, late-EPCs, also called outgrowth endothelial

cells (OECs) [14] or endothelial colony-forming cells (ECFCs) [9],

are the cells that contribute more directly to neovascularization

[17]. Late-EPCs derive from the CD14- fraction of circulating

mononuclear cells, may be enriched in cells that express some

combination of CD34 and KDR, uniformly express endothelial

but not leukocyte markers and are able to form capillary tubes in

vitro [18–20]. They form colonies of endothelial cells endowed

with a late and robust proliferative potential, so that they can be

passaged over 2 months ex vivo. Because they act in many aspects

like classical primitive hematopoietic progenitor cells, late-EPCs

might represent a major source of endothelial progenitors in vivo

[19,21,22], and may therefore be an optimal model for the study

of KS. Accordingly, it has been recently demonstrated that murine

bone marrow-derived endothelial progenitors, analogous to

human late-EPCs, transfected in vitro with a KSHV artificial

chromosome induce KS-like tumors in mice [23].

First of all, in this study we demonstrate that late-EPCs can be

cultured from the peripheral blood of patients with cKS.

Moreover, our results clearly indicate that late-EPCs from cKS

are infected by KSHV and may retain the virus in long-term

cultures, as late-EPCs from the totality of cKS patients studied

resulted to harbor variable amounts of viral genomes in cultures

tested up to over 2 months.

Infected spindle cells explanted from KS biopsies are known to

rapidly segregate and loose KSHV genomes when placed in

culture [24–26]. It is possible that the ability of late-EPCs to retain

longer KSHV episomes may be related to the differentiative stage

of these cells, that are not mature endothelial cells, but progenitors

endowed with high replicative potential. Another population of

circulating endothelial-featured cells able to support viral replica-

tion had been reported by Monini and colleagues [2]. They

derived spindle-like endothelial macrophages from PBMCs of KS

patients able to support KSHV infection up to 4 weeks. Although

these cells differed from late-EPCs as they expressed CD45 and

CD14 and were considered of monocytic origin, this pioneeristic

study greatly contributed to the idea that circulating endothelial

precursors may act as reservoir for KSHV infection.

The detection of viral progeny released in all the supernatants of

unstimulated cultures indicates that late-EPCs may support the

lytic replication program of KSHV and this finding may

alternatively suggest that the virus is propagated in culture by

cycles of de novo infection of late-EPCs. Accordingly, when

KSHV DNA was analyzed in subsequent passages of unstimulated

late-EPCs from patient KS 4, we could observe that the levels of

viral genomes may change over time. Whether these fluctuations

may reflect cycles of productive viral replication that may be

responsible for the continuous infection of endothelial progenitors

may deserve further investigation.

Moreover, our results indicate that the basal level of lytic

replication can be further increased not only by chemical

treatment but also by hypoxic conditions. This finding is worthy

relevant to the role that lytic KSHV replication is supposed to play

in the promotion of KS tumorigenesis by sustaining the population

of latently infected cells [23,27]. And it is still more relevant

because hypoxia-induced KSHV reactivation, demonstrated in

vitro in PEL cell lines [28], has been suggested to contribute to the

tendency of KS to occur on the lower legs due to poor circulation,

particularly in cKS patients [29]. In this respect, hypoxia may be

considered as a KS cofactor, and the ability of late-EPCs to

support viral lytic reactivation in hypoxic conditions may have

particular relevance in vivo.

In addition, the fact that late-EPCs harbor moderate amounts of

viral genomes in unstimulated conditions may be partly related to

the type of KS patients selected for the study. In fact, to avoid the

interference of confounding factors related to iatrogenic or AIDS-

related KS, we studied patients affected by the classic, Mediter-

ranean variant of the disease that is typically characterized by a

poorly aggressive course and a relatively low viral load [16,30], as

confirmed in the PBMCs of our patients. The detection of

moderate amounts of viral genomes in our cultures also suggests

that only a small proportion of late-EPCs may be infected with

KSHV. Alternatively, it may be hypothesized that the source of

virus in our cultures may be represented by the negligible

percentage of cells lacking endothelial markers. The demonstra-

tion that KSHV genomes could similarly be detected in unsorted

or CD146+ highly purified late-EPCs does not definitely exclude

this possibility but renders it unlikely.

Endothelial progenitors are thought to be contained, together

with hematopoietic stem/progenitor populations, within the pool

of circulating CD34+ cells [31]. It has been reported that

circulating CD34+ cells, that we recently demonstrated to be

increased in patients with cKS [8,32], may harbor KSHV [33].

Similarly, it has been demonstrated that circulating CD146+ cells,

which contain endothelial progenitors but also mature endothelial

cells [34], may harbor the virus, too, in KS patients [16].

However, cell subpopulations of CD34+ or CD146+ preparations

were not further characterized and therefore both the observations

are compatible with, but not demonstrative for, KSHV infection

of endothelial progenitors.

In conclusion, in this study we suggest that circulating

endothelial progenitor cells cultured from the peripheral blood

of cKS patients as late-EPCs are infected by KSHV and can

support viral lytic replication. This finding may be of crucial

importance for the comprehension of KS pathogenesis, because

late-EPCs may likely represent the KSHV-infected circulating

precursors of KS spindle cells that, as recently suggested by Gill,

may home to the permissive site and propagate to produce KS

lesions [35]. A definitive demonstration of this hypothesis will need

experimental models of in vivo tumorigenesis.
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